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ABsrRAcr 

A method to approximate time optimal paths for robotic 
manipulatom is pnsenrtd The method uses the Acceleration Map 
which is a graphical rrpreseapdou of the mrnipulator dynamics. The 
Accelerarion Map is composed of AfcelCdOn Lines that fcpfcscnt the 
directions of maximum tip acceleration from a point at zero velocity. 
The time OpMlal path is appnjximved by connecting a smooth curve 
between the end points, tangent to thc Acceleration Lines. It is shown 
that aotuingdar time optimal paths. with zcro velocity at their end 
points. are wgent to one of the Acceleration Lines near the md- 
poinu. 

INTRODUCTION 

The task of obtaining the time optimal motion for robotic 
manipulaton with nonlinear and coupled dynamics, using existing 
methods [ 1-51. is computationllly cumbersome, and typically done 
off-line. In applications where off-line methods arc not acceptable, a 
fast approximation to the optunal motion is desirable. In this paper. 
the motion of a manipulator between two end poinu is regarded as 
being composed of a path, describing the locarions (and aimmrion) of 
the end-effector. and a velocity profie dong that path. The optimal 

' motion is, therefore, composed of the optimal path and the optimal 
velociv profile along that path This paper presents a computationally 
fast method that can obtain approxirmtions to time optimal paths, and 
is potentially applicable to on-line path planning. The motion along 
the path is obtained using the method for time optimal motion along 
specified paths. presented in References [6,7]. The path 
approximation method is based on a graphical representation of the 
acceleration capabilities of the manipulator. Graphical rrpmentatim 
of manipulator dynamics have been prcviously developed in the form 
of the effective inertia of the manipulator tip [8], its dynamic 
manipulability [9 ] ,  and its acceleration capabilities [lo]. The 

acceleration caprbilites of the manipulator tip, in the form of 
Accelcranon Parallelograrm, wen fvst used for opamal kinematic 
design of manipulators [Ll]. In [lo) the Acceleration 
Hyperparalleleptpeds were introduced. which arc similar to the 

The method presented here introduces the Acceleration 
Parallelepipeds which qmsent the maximum accelention capabilities 
of the endeffector in all directions from a given point The 
Acceleration Parallelepipeds arc similar to Khatibs Acceleration 
Hypa-pora l l t l p lpds , excep~~thcyr rp resmt th~-  n 
component parallel to the direction of motion, while Khaab's 
Acceleration Hyperparallelepipeds represent the absolute tip 
accelerafjon. The Acceleration ~ l e p i p e d s  are uscd to cmsauct 
the Acceleration Lines that indicate the directions in which a 
manipulator tip has the highest acceleration from a given point in the 
work-space. stamng with zero velocity. It is shown h m  that 
nonsingular minimum h e  paths arc tangent to the Acce l~don  Lines 
at the end points. Near-optimal paths can be consmcted by 
connectmg smooth curves between the end points, tangent to the 
Acceleration Lines. Time optimal paths. obtained with a more 
accuratc off-line method prcscntcd in [12). arc shown to bc highly 
correlated with he A c c c l d o n  Lina. The method is derived in a 
general form for any nonredundant manipulators, howevn, it can be 
visualid easily in two dimensions, as demonstrated in examples for 
a hvo link manipulator. The Acceleration Lines provide also insights 
into the possible shape of the time optimal paths. and can be used as a 
design tool in the design of work cell layouts for fast motion between 
work stations. 

Acceleration Parallelograms, but gmeaked to higher dimensions. 

THE MElXOD 

A manipulator's tip acceleration capabilities are represented 
graphically by the Acceleration Lines (AL) which represent the 
directions in which the manipulator's tip can move with the highest 
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from the Acceleration Paralle!epipeds (AP) which represent the 
maxunum avadable accelemon of the marupulator ap in dl dkcnons 
at a given configuration. This method IS applicable to manlpulaton 
with n g d  links for which the dynamc model and joint coordinates 
can be defined for any pomt on the pah 

In this section the Acceleration Parallelepipeds (AP) are 
presented. An AP, derived from the manipulator dynamics, 
represents the maximum acceleration available for the manipulator tip 
in all directions from a given point in the work space. The 
acceleration represents the component in the direction of motion 
(tangent to the path) of the absolute acceleration. and is dependent on 
the velocity and path curvature. 

To obtain the Acceieration Parallelepipeds we fvst consider the 
equations of motion of the manipulatoc 

w h m  M is an nxn inertia matrix, n is the number of the manipulator 
degrees-of-freedom. C is an nxnxn array of the coefficients of the 
coriolis forces, G is a vector of the gnvity forces, T is the vector of 
actuator efforu. and 8. h and arc the joint displacements. 
velocities and accelerations. respectively (6.71. The actuator torques 
arc bounded by constant bounds: 

The path of the end-effector can be represented by the six 
dimensional vector e composed of the position and orienration of the 
cnd-cffcctor: 

w h e n  X. is the position vector. and 19 is the vector of the Euler 
angles. representing the orientation of the end-effector fued frame 
with respect to an ineniai frame. The mapping from the joint angles to 
work space coordinates is defined by the kinematic uansformation: 

(3) 
If the displacement S is a paramerer along the path. the vectors 3 and 

are the velocity and the acceleration tangent to the path. with the 
magnitudes 5 and 3 , respectively. Differentiating Equation (3) 
twice with respect to am and solving for Q and 

(x. 1p) = (X*Y.WPpcp2.*) 

E (SI = B 0 

yields (71: 

where Re is the Jacobian m h  
R&j) = a R i / a  ej 

and Re, is the Hessian of the vector function B. eS is a unit vector in 
the direction of motion, Es, is a vector in the direction of the 
cenmfugal acceleration. The s and e subscripts denote panial 
derivatives with respect to the scalar S and the vector 8, respccuvcly. 
Substituting Equation (4) into Equation (1) yleldr the equations of 
motion in terms of ,  S ami : 

where 

Solving Equation ( 5 )  for the acceleration yields: 

5 = Re hf ' ' ( I : -hS 2 + G )  ( 6) 

If we ignore the gravity forces G and assume zero velocity, then 
Equation (6) reduces to: 

For given joint angles B. Equation (7) defines a linear mapping 
from the actuator torques 1 to the acceleration 3 at zero velocity. In 
multi-dimensional space. this aansformation maps the rectangular 
polyhedron. representing the region of the avadable toques 1, to the 
Acceleration Parallelepipeds (AP). In two dimensions, the 
parallelepipeds reduce to parallelograms, as shown in Figure 1. The 
AP defines the region of the maximum available acceieration in dl 
direcuons at a given configuration. Referring to Figure 1. the 
maximum acceleration is given by the vector directed in the direction 
of motion, originating at the AP center. The rnagnin.de of the vector 
from the AP center to the AP boundaries dcvnnines the magnitude of 
the available acceleration in this direction. Similarly, the maximum 
deceleration is given by the vector from the AP center directed in the 
opposite direction. 

" .  

Figure 1 Mapping the Actuator Toques into the Acceleraaon 
Parallclogam at Zero Velocity. 

Plotting the AP in the work space provides insights into the 
acceleration capabilities of the manipulator. Figure 2 shows the 
Acceleration Parallelograms in work space and in joint space 
coordinates for the two link manipulator shown in Figure 3 with the 
parameters given in Table 1. Note that in joint space the Acceleration 
Puallelograms are uniform in the 81 dmtion  since the equations of 
motion are not a function of 8 1 for this system From Figure 2 i t  can 
be seen that the maximum end-effector acceleration varies with the 
direction of motion and with the location of the tip in the work space. 
It is possible to obtain a desired manipulator dynamic performance. 
such as isotropic and unifom sired Acceleration Parallelograms. by 
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Accclcraaon Pyallclepipeds were 0bt;uned at zero vclociry; however. 
unlike thi: Acceleraaon Hyperparallelepipeds presented in (IO], here, 
the Pxallelep1peds deform and lose their shape as the velocrty 
increases, as shown in [ 121. 

2 .0  I I 

a) ?hc Acceleration parallel- in Work Space Coordinates 

b) Acceleration Parallelograms in Joint Soace Coordinates 

Figure 2 Acceleration Parallelog~ams for the Two Link 
Manipulator Shown UI Figure 3 

At zero velocity, the Acceleration L i n a  (AL) represent the 
directions of motion with the highat acceleration of a manipulator's 
tip from a given point These lines reflect the manipulator's specific 
parameters and its dynamic behavior in the work space. The AL can 
be derived either in work space or in joint space coordirutcs; in either 
representation. they can be used to suggest the general shape of time 
optimal paths. 

An Acceleation Line is construcred by plotting the locations of a 
vertex of the Acceleration Parallelepipeds, following successive 
moves in the direction of that vertex, as shown in Figure 4 
schematically for a two-dimensiond manipulator. Since, in general. 
the AP arc shaped differently at different points in the manipulator 
space. the assembly of the line segments m u l u  in a curved line that 
reflects the change in direction of the manipulator's maximum 
acceleration capabilities. Since each Acceleration Parallelepiped has n 
vertices. then arc n different rU. departing from each point n being 
the number of the manipulator's degrees of freedom. Since the AP 
with zero velocity is used at all points along the AL. these l ine  arc 
most meaningful when the velocity is relatively small. 

-/ 
-ACCELERATION 

LINES I 

Figure 3 The Construction of The Acceleration Line  
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the end points. The nme o p a d  path. 3 k O  shown i t i  Figun 5 .  was 
obmned by the parameter opunuzauon method [11, represenang the 
path by 7 B splines. n e  opumal path in Figure 5 is shown to be 

2 
It is.shown below that nonringufar and &anq-Jingular-bang 

time opamal paths are tangent to the Accelenuon Lines at b e  end 
points. A nonringdar opumal path 1s defined h a c  as a path along 
which the ame opamai trajectory (path and velocity) consists of 
bang-bang conml (the actuators are at theu extremes at all times). A 
srngufar arc is a pomon of a ume optimal trajectory which IS not 
necessanly bang-bang. A bang-singular-bang arc IS a time opumal 
a~ectory with bang-bang conmi only near the end points. 

coroilary 
Nonsingular and bang-singular-bang time optimal paths are 
tangent to the Acceleration Lines at the end points, provided the 
velocity at the end points is zeto. 

By definition. the actuators of nonsinguiar and bang-singufar- 
bang trajectories arc at their exmmes at least near the end points. 
The Acceleration Lines arc consuucted such that they depan from 
the end points in the directions obtained by applying some 
combination of the actuator extremes (the actuator extremes 
represent the v d c a  of the 1 region which are mapped into the 
vertices of the AP). Hence. an optimal path tangent to one of the 
Acceleraaon Lines near the end points is either bung-bung or 
b a n g - s i n g ~ - h g  , assuming zero velocity at the end points. 

proof 

The Acceleration Lines provide partial information about the 
shape of time optimal paths near their end points. For nonlinear 
systems. several local time optimal paths may exist which satisfy this 
corollary [2l, each tangent to a different set of Acceleration Lines. 
Theorrtically, if there arc n Acceleration Lines at every point in the 
work space, there may be at most (2n)* different nonsingdur local 
time optimal paths. Expenmce shows that the global optimal path is 
the shortest one among all the local optimal ona [ 121. 

Approximate time optimal pachs can be obtained by connccdng 
the end points with smooth curves. tangent to the Accelerauon Lines. 
The optimal motion along these paths is then obained using the 
method presented in t6.7. These paths are only approximations to 
the m e  time opamai paths since their shape funher away from the end 
points is not known exactly. The shape of the optimal paths between 
the end points depends on the size of the Coriolis forces. the vector h 
in Equation (5);  the smaller the cono\is forces, the closer the path to 
the Acceleration h e s .  Approximaan3 the shape of the optimal path, 
in particular its slopes at the end points. may speed up exact 
optimization methods. such as the one using the Ponrryagin maximum 
principle [21, and other methods which require an initial path for the 
optimization [I]. 

EXAMTLES 

The following examples demonstrate the high corellation 
between the Acce!eraaon Lines and time opamal paths, obtained with 
the method presented in [ 11. In the following examples, the two link 
manipulator shown in Figure 3 is used 

consistent with the Accelamon Lines, suggesung that this path is 
indeed close to the m e  opamal path. Opamal paths obtamed with 
more control points tended to come closcr to the Acceleranon Lines. 

-2 .01  I 
-2 .0 2 .0 

Figure 5 The T i  opcunal Path and thc A c c e l d o n  I.ks 

Figure 6 shows two optimal paths with similar dmts. Plotting 
the Acceleration Lines at the end points. shown in Figure 7, suggests 
that at least two global anti-symmetric solutions can be expected 
These paths were obtained while optimizing in work space 
coordinaes. While optimizing in joint space coordinates. the optimai 
path shown in Figure 8 was obtained. Again, comparing the path to 
the hccelmtion Lines may explain or even suggest its shape. The 
differences between the work space and joint space opfimizations arise 
from the fact that while optimizing the path in work space coordinates, 
the solutions tend to avoid the center point which is a point of 
singularity. In joint space representation. then are no singular polno. 
therefore the solution can pass Lhrough the centtT point, as was shown 
in Figure 8. The second symmemc solution in joint space coordinates 
is a mirror image of the path shown in Figure 8. In joint space, the 
two solutions were obtained by optimizing two separate paths. with 
one common end poinr and the other end poinu spaced 360 degrees 
apan, as shown in Figure 9. Also shown in Figure 9 are the joint 
space Accelemtion Lines at the end points. Fig- 10 and 11 show 
opumal paths and heir Acceleration Lines berwem other end poinu. 

These examples demonstrate that optimal paths arc tangent to the 
Acceleration Lines at the end points. The high correlation between 
time optimal paths and Acceleration Lines suggests that the gencral 
shape of the optimal paths could be predicted from the shape of the 
Acceleration L i n e  only. Experience shows that the global optimal 
path is the shortest path among all possible local optimal paths 
(tangent to one of the Acceleration Lines at the end points). 

- A 3  7- 



. . .  
Palam 

- 
X 

-a.oL 1 
0 . 0  -1.0 

Figure 6 Two Symmetrical OpCimai Paths Optimized in Work- 
space CoordiMtts 
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Figure 7 The Acceleration Lines for the Optimai Paths from 
Fig= 6 
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Figwe 8 An Optimal Path Shown in Work Space Coordinates, 
optimitcd in Joint Space C00di~m for Same End Points as in 

Figure 6 

Figure 9 The Optimal Paths from Figurr 7 Shown in Joint Space 
Coordinarc~ with the Acceleration Lines . 
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Figure 10 An Opeimal Path and the Acceleration Lines 
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Figure 1 1  An Optimal Path and the Acceleration Lines 
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. 
A h;uristic method 10 analyze optimal paths and synthesirc near- 

mnimurn paths has ken presented. The method uses Acceicraaon 
Lines to represent the directions of maximum acceleration of a 
manipulator tip in wort space or joint space coordinates. It is shown 
that nonringufar time optimal paths are tangent to the Acceleration 
Lines ar the end points. provided that the initial and final velocities arc 
zero and that he Coriolis forces are relatively small. Examples arc 
presented that demonstrate the close fit benvetn time optimal paths and 
their Acceleration Lines. The examples and experience suggest that 
the global opumal path. without obstacles. is the shonest path among 
the local optimal ones. This path can be easily approximated using the 
Acceleration Lines only. 

Since the Acceleration Lines are obtained by a direct 
computation, they can be used to generate quickly near-minimum 
paths in a real time path planning procedure. Approximations to rime 
optimal paths can be also used as initial conditions for more exact 
optimization procedures, such as the ones presented in [1,25]. The 
Acceleration Lines provide insights into a manipulator's dynamic 
behavior, and can be used for work cell layout design. 

The support of this research by the Automation Branch of 
NASA Langley research Center under Grant NAG-1-489 is 
acknowledged. 
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